TOPICS IN SET THEORY: Example Sheet 2¹

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge

Michaelmas 2014-2015 Dr Oren Kolman

1 Special Aronszajn Trees

Prove that there exists a special Aronszajn tree.

2 \mathbb{R} -EMBEDDABLE TREES

Suppose that \mathbb{T} is an \mathbb{R} -embeddable normal \aleph_1 -tree. Show that \mathbb{T} is an Aronszajn tree, but not a Suslin tree.

3 SUB-TREES

A tree S is a *convex sub-tree* of a tree T if $S \subseteq T$, $<_{\mathbb{S}} = <_{\mathbb{T}} \cap (S \times S)$, and $(\forall x \in S)(\forall y \in T)(y <_{\mathbb{T}} x \Rightarrow y \in S)$. Note that $ht_{<_{\mathbb{S}}}(x) = ht_{<_{\mathbb{T}}}(x)$ for every $x \in S$. A κ -sub-tree is a sub-tree that is also a κ -tree.

For $\delta \in Ord$ and a linear order I, let ${}^{<\delta}I$ be the family of I-valued sequences of length less than δ . Partially order ${}^{<\delta}I$ by $a \prec b$ iff b properly extends a, i.e. $a \subset b$. Show ${}^{<\delta}\mathbb{I} = ({}^{<\delta}I, \prec)$ is a tree. What are $ht({}^{<\delta}\mathbb{I})$ and $Lev_{\alpha}({}^{<\delta}\mathbb{I})$ for $\alpha < \delta$?

The tree ${}^{<\delta}\mathbb{I}$ is called the *complete (or full) I*-ary tree of height δ .

Prove that if the Aronszajn tree \mathbb{A} is a convex sub-tree of $\{f \in {}^{<\omega_1}\omega : f \text{ is an injective function}\}$, then \mathbb{A} is not a Suslin tree.

REMARK: Some sources (e.g. Kunen) require convexity in the definition of sub-tree; others do not. If convexity is not present, then $ht_{\leq s}(x) \leq ht_{\leq T}(x)$ and strict inequality can occur.

4 SINGULAR CARDINALS LACK THE TREE PROPERTY

Show that no singular cardinal $\kappa \geq \aleph_0$ has the tree property, i.e. if κ is singular, then there exists a κ -Aronszajn tree.

5 NORMALISING TREES

- (i) Show that if \mathbb{T} is a normal \aleph_1 -tree satisfying the countable chain condition, then \mathbb{T} is a Suslin tree.
- (ii) Prove that if \mathbb{T} is a Suslin tree, then there are at most countably many $x \in T$ such that $\{y \in T : x <_{\mathbb{T}} y\}$ is countable.
- (iii) Suppose that S is a Suslin tree. Explain (with proof) how to find inside S a normal Suslin tree S^{*} that satisfies the condition:

(*) $(\forall x \in S^*)(\{y \in S^* : y \text{ is an immediate } <_{\mathbb{S}^*} \text{-successor of } x\} = \aleph_0).$

 $^{^{1}}$ Comments, improvements and corrections will be much appreciated; please send to ok261@cam.ac.uk; rev. 14/12/2014.

- (iv) Suppose that A is an Aronszajn tree. Can one find inside A a normal Aronszajn tree \mathbb{A}^* that satisfies the condition:
 - (*) $(\forall x \in A^*)(\{y \in A^* : y \text{ is an immediate } <_{\mathbb{A}^*} \text{-successor of } x\} = \aleph_0)$?
- 6 DENSE OPEN SETS IN SUSLIN TREES ARE CO-COUNTABLE

Suppose S be a Suslin tree and $D \subseteq S$ is dense and open in S: $(\forall x \in S)(\exists d \in D)(x \leq d)$ and $(\forall z \in S)(\forall d \in D)(d \leq z \Rightarrow z \in D)$. Prove D is co-countable in S.

7 Trees and Lines

Suppose \mathbb{T} is a tree. For $\alpha < ht(\mathbb{T})$, let \prec_{α} be a linear ordering of the level T_{α} . For $x \in T$ and $\alpha \leq ht_{\mathbb{T}}(x)$, let $p_{\alpha}(x)$ be the unique element in $T_{\leq x} \cap T_{\alpha}$. Define a binary relation \prec_{lex} on T as follows: for $x \neq y \in T$, let $x \prec_{lex} y$ iff either $x <_{\mathbb{T}} y$ or $p_{\alpha}(x) \prec_{\alpha} p_{\alpha}(y)$, where α is the least ordinal such that $p_{\alpha}(x) \neq p_{\alpha}(y)$. Show that (T, \prec_{lex}) is a linearly ordered set.

8 ARONSZAJN LINES AND SPECKER TYPES

An Aronszajn line (also called a Specker type) is a linear order $\mathbb{A} = (A, <_{\mathbb{A}})$ such that A has cardinality \aleph_1 , \mathbb{A} contains no order-isomorphic copy of ω_1 or the reverse order-type ω_1^* , and \mathbb{A} contains no order-isomorphic copy of an uncountable set of real numbers. Prove (in ordinary set theory) that Aronszajn lines exist.

9 κ -Kurepa Trees When $\kappa = \aleph_0$ or κ is (Strongly) Inaccessible

Suppose $\kappa = \aleph_0$ or κ is strongly inaccessible (i.e. $\kappa = cf(\kappa) > \aleph_0$ and $(\forall \lambda < \kappa)(2^{\lambda} < \kappa)$). Check that the complete binary tree of height κ is a κ -tree with at least κ^+ κ -branches.

10 PRODUCTS OF TREES

Suppose that for i = 1, 2, \mathbb{T}_i is a κ -tree and λ_i, κ are infinite cardinals. Let the product tree $\mathbb{T}_1 \times \mathbb{T}_2 = (\bigcup_{\alpha < \kappa} (Lev_\alpha(T_1) \times Lev_\alpha(T_2)), \prec_{\mathbb{T}_1 \times \mathbb{T}_2})$ be defined as follows: $\langle x, y \rangle \prec_{\mathbb{T}_1 \times \mathbb{T}_2} \langle u, v \rangle$ iff $x \prec_{\mathbb{T}_1} u$ and $y \prec_{\mathbb{T}_2} v$.

- (i) Verify that $\mathbb{T}_1 \times \mathbb{T}_2$ is a κ -tree.
- (ii) Show that if \mathbb{T}_1 and \mathbb{T}_2 are Aronszajn trees, then $\mathbb{T}_1 \times \mathbb{T}_2$ is also an Aronszajn tree.
- (iii) Prove that if S is a Suslin tree, then $S \times S$ is not a Suslin tree.
- (iv) Find the optimal value μ (if it exists) as a function of λ_i such that if \mathbb{T}_i is or has the property $\lambda_i P$ (and this makes sense), i = 1, 2, then the product $\mathbb{T}_1 \times \mathbb{T}_2$ is or has the property μP , where the property is listed below: (a) the μ -chain condition; (b) μ -Suslin; (c) μ -Aronszajn; (d) μ -Kurepa.

11 SUSLIN TREES FROM SUSLIN LINES

Suppose that there exists a Suslin line. Show there exists a Suslin tree.

12 Suslin Lines from Linear Orders X where $S(X) \leq \aleph_1$ and $d(X) = \aleph_1$

Suppose that there exists a linear order $\mathbb{X} = (X, <)$ such that $S(\mathbb{X}) \leq \aleph_1$ and $d(\mathbb{X}) = \aleph_1$.

- (i) Show that there exists an unbounded dense linear order $\mathbb{Y} = (Y, <)$ such that $S(\mathbb{Y}) \leq \aleph_1$ and $d(\mathbb{Y}) = \aleph_1$.
- (ii) Deduce there is a Suslin line.
- 13 TOPOLOGICAL PROPERTIES OF SUSLIN LINES

Suppose that S is a Suslin line. Prove the following claims.

- (i) If $\{x_{\alpha} : \alpha < \eta\}$ is a strictly increasing sequence in \mathbb{S} , then $\eta < \omega_1$.
- (ii) The line S contains a dense subset D of cardinality \aleph_1 .
- (iii) For each $x \in S$, there exists a strictly increasing sequence $\{x_n \in D : n < \omega\}$ such that $x = \sup\{x_n \in D : n < \omega\}$.
- (iv) The line S has cardinality 2^{\aleph_0} .

14 DENSITY BOUNDS

Suppose that $\mathbb{X} = (X, <)$ is a linear order such that $S(\mathbb{X}) \leq \aleph_1$. Prove $d(\mathbb{X}) \leq \aleph_1$

- 15 ARONSZAJN TREE CONSTRUCTION
 - (i) Show that there exists a family $\{e_{\alpha} : \alpha < \omega_1\}$ of functions such that each $e_{\alpha} : \alpha \to \omega$ is injective and for $\beta < \alpha, e_{\beta}$ and $e_{\alpha} \upharpoonright \beta$ are identical at all but finitely many points.² [HINT. Define the functions by induction on $\alpha < \omega_1$; at successor ordinals, chose a one-point extension; at a limit ordinal δ , write $\delta = \sup_{n < \omega} \alpha_n$ where $\alpha_0 < \alpha_1 < \ldots$ and use the functions e_{α_n} .]
 - (ii) Prove there exists an Aronszajn tree. [HINT. Consider the tree $\mathbb{T} = \{e_{\alpha} \upharpoonright \beta : \beta \le \alpha < \omega_1\}$ with the functions from above partially ordered by $f \prec g$ iff g is a proper extension of f.]

16 COUNTRYMAN TYPES

A Countryman type (or Countryman line) is the order-type of an ordered set $\mathbb{C} = (C, <_{\mathbb{C}})$ if $C \times C$ is the union of countably many chains under the partial order $(a, b) \preceq (c, d) \Leftrightarrow$ $(a \leq_{\mathbb{C}} c \wedge b \leq_{\mathbb{C}} d)$. Using the functions from the previous question, letting $C = \{e_{\alpha} : \alpha < \omega_1\}$ and $\mathbb{C} = (C, \prec_{lex})$, show that the order-type of \mathbb{C} is a Countryman type.³

17 Suppose that \mathbb{L} is a κ -Aronszajn line or a κ -Suslin line, i.e. derived from the pertinent κ -cultivar. What can one say about the existence of bisectors of uncountable subsets of \mathbb{L} ?

 $^{^{2}}$ These functions will be used later in the proof that Cohen real forcing adds a Suslin tree in the generic extension; see Example Sheet 4.

 $^{^{3}}$ The existence of a Countryman line is due to Shelah (1976); the proof above was found by Todorcevic.

18 QUESTIONS.

- (i) Can one refute the assertion " $2^{\aleph_{\omega}} > \aleph_{\omega+1}$ and $\aleph_{\omega+1}$ has the tree property"?
- (ii) Can one refute the assertion "the tree property holds simultaneously for all $\aleph_n, 2 \leq n < \omega$ and for $\aleph_{\omega+1}$ "?
- (iii) Is it consistent (relative to ordinary set theory or even ordinary set theory plus some large cardinals) that for each uncountable cardinal κ , there is no κ^+ -Aronszajn tree?

Recent research on Aronszajn trees has also explored the structural properties of the class, for example, the questions whether there is a universal Aronszajn tree, i.e. one in which every other is isomorphically embedded, whether there is a finite basis for the class, and whether the class of Aronszajn trees has a system of invariants, i.e. a classification theorem. The following items are useful:

- (i) J. Cummings, M. Foreman, *The tree property*, Advances in Mathematics, 133 (1998), 1–32.
- (ii) J. Tatch Moore, Structural analysis of Aronszajn trees.

http://www.math.cornell.edu/~justin/Ftp/structure_Atree.pdf

- S. Todorcevic, Trees and linearly ordered sets, Handbook of Set-theoretic Topology, North-Holland 1984, 235-293.
- (iv) B. Velickovic, Saturation of Aronszajn trees and Shelah's conjecture.

http://www.logique.jussieu.fr/~boban/pdf/ucla-lecture.pdf